DAM Lab Research Intelligence

Curated AI research papers in Dental and Medical imaging.

CLINICAL

Temporal-Enhanced Interpretable Multi-Modal Prognosis and Risk Stratification Framework for Diabetic Retinopathy (TIMM-ProRS)

Source: ArXiv Medical Imaging Date: 2026-01-13 Score: 9.4/10

Diabetic retinopathy (DR), affecting millions globally with projections indicating a significant rise, poses a severe blindness risk and strains healthcare systems. Diagnostic complexity arises from visual symptom overlap with conditions like age-related macular degeneration and hypertensive retinopathy, exacerbated by high misdiagnosis rates in underserved regions. This study introduces TIMM-ProRS, a novel deep learning framework integrating Vision Transformer (ViT), Convolutional Neural Network (CNN), and Graph Neural Network (GNN) with multi-modal fusion. TIMM-ProRS uniquely leverages both retinal images and temporal biomarkers (HbA1c, retinal thickness) to capture multi-modal and temporal dynamics. Evaluated comprehensively across diverse datasets including APTOS 2019 (trained), Messidor-2, RFMiD, EyePACS, and Messidor-1 (validated), the model achieves 97.8\% accuracy and an F1-score of 0.96, demonstrating state-of-the-art performance and outperforming existing methods like RSG-Net and DeepDR. This approach enables early, precise, and interpretable diagnosis, supporting scalable telemedical management and enhancing global eye health sustainability.

Keywords

oraldeep learningneural networktransformercnnconvolutionaldiagnosisdataset